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Chemical Kinetics of the Reaction of Oxygen with Hydrogen and with Deuterium1 

B Y LOUIS S. KASSEL2 AND H. H. STORCH3 

Introduction 

Recently both Frost and Alyea4 and Hinshel-
wood, Williamson and Wolfenden5 have presented 
data on the reaction of oxygen with deuterium, 
and have concluded from comparison with the 
oxygen-hydrogen data that the substitution of 
deuterium for hydrogen does not affect the prob
ability of chain branching. We felt that the 
oxygen-hydrogen reaction had not as yet been 
subjected to a sufficiently careful analysis to 
justify these authors' methods of comparison, 
and in attempting to supply this analysis we have 
found that the commonly accepted (or at least 
frequently published) theories of this reaction 
require considerable revision. 

The Effect of Surface in Breaking Chains 

Before considering any mechanism in detail, 
it is necessary to examine the mathematical 
theory of chain reactions with chains broken 
at the surface of the vessel. I t has been customary 
to write the equivalent volume rate of surface 
destruction of chains as (k/pd2)n, where n is the 
concentration of chains, d a linear dimension of 
the vessel, and p a linear function of the partial 
pressures of the various gases. Then, if the net 
branching rate in the gas phase is an, the condi
tion for the explosion limit is taken to be 

a = k/pd* (1) 

This admittedly crude treatment is supposed 
to be justified by the more exact calculations of 
Bursian and Sorokin.6 The diffusion equation 
for a spherical vessel is 

~5i -°hh(' i)n\ 
dr ) I + an (2) 

The condition for the explosion limit is that the 
number of chains in existence is not changing, 
that is 

bn/bt = O (3) 
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The most general solution of (2) and (3) which 
remains finite at the origin is known to be 

n — {A/r) sin \/a/D r (4) 

If every chain striking the surface is destroyed, 
the boundary condition for (4) is n = O at r = 
r0, where r0 is the radius of the vessel. This 
gives 

a = TrW/r<? (5) 

as the condition for the explosion limit; since D is 
inversely proportional to p, (5) is in fact equiva
lent to (1). This is essentially the treatment 
given by Bursian and Sorokin. 

The assumption that no chains are reflected 
from the surface, however, is certainly incorrect. 
It has been supposed that the result of reflection 
would be to replace r0 by some "effective ra
dius" /3r0,

7 but it will now be shown that this is 
not the case. When t is the fraction of chains 
destroyed on striking the surface we obtain the 
boundary condition for (4) by equating the total 
rate of branching throughout the volume to e 
times the rate at which the chains strike the 
surface; the latter rate we take as 47Tr0(̂ o — X) X 
(v/4:)nx, where Wx is the concentration of chains 
one mean free path from the surface and v is the 
mean molecular velocity. This boundary condi
tion reduces to 

tvr$ sin V a/D (r0 — X) = AD [sin \/a/D r0 — 

rocos \/a/D ru] (6) 

Where X -C r0, as is the case in all physically 
interesting conditions, (6) becomes 

4£ (7) 
i -y/a/D ro — S/a/D r„ cos \fa/L 

If \/a/D r0 = IT, (7) gives 
D = eSX/4 (8) 

The diffusion coefficient is usually taken as 
D = v\/3 (9) 

but the difference in the numerical coefficient is 
of the sort to be expected from taking all free 
paths equal to the mean free path, as we have 
done. This treatment thus gives essentially 
the same result for the case e = 1 as that found 
by Bursian and Sorokin. 

(7) Daltonand Hinshelwood, Proc. Roy. Soc. (London), A126, 294 
(1929J. Hinshelwood and Williamson, "The Reaction between Hy
drogen and Oxygen," Oxford University Press, 1934, p. 59. 
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When 6 is large enough, it is convenient to set 

Va/D fo *= ir - S (10) 
If we then expand the trigonometric terms in 
series and use D = vX/4, (7) reduces to 

IA = 1 + OoX - I)(SAr)(I - S'/3 + . • •) 
We are interested in values of r0/X of the order of 
10*. Then when t = 0.5, 8/T = 10~s; when 
e = 0.1, 5/x = 9 X 10~8; when e = 0.01, 3/TT = 
0.099. That is, the critical value of y/a/D r0 is 
only 10% less for a surface which destroys 1% 
of the chains striking it than for a surface which 
destroys all the chains. Surfaces of moderate 
efficiency are thus almost equivalent to surfaces 
of perfect efficiency, and the critical condition is 
approximately represented by (5). 

For low efficiencies the relations are con
siderably different, as may be seen from Table I. 
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TABLB I 

SOLUTIONS OF EQUATION (7) 
« — i i 

(4ro /JT2«>) a 

(XAo) 
0.009801 
.02831 
.04548 
.08349 
.11577 

.14352 

.18863 

.22326 

.25000 

.27042 

.28549 

.2958 

.3019 

.3034 

.3038 

.3039 

(4 hvn)D 

(XAo) 
0.01000 
.03009 
.05039 
.10307 
.16023 

.22425 

.38495 

.62017 
1.0000 
1.6901 
3.1721 

7.396 
30.19 
121.38 
337.53 
3039.4 

wcenter 

0.0 
0.01010 
.03088 
.05241 
.10930 
.17001 

.23387 

.36789 

.50445 

.63662 

.75683 

.85839 

.93549 

.98364 

.99586 

.99852 

.99984 

(X/«f») 

(XAo) 
0.040 
.120 
.201 
.412 
.641 

.897 
1.14 
2.48 
4.00 
6.76 
12.7 

29.6 
121 
485 
1330 
12200 

The first line of this table applies to the case 
e = 1; the rest of it is correct only when \/r0 and 
e are sufficiently small. To determine how small 
these values need be, we note that each entry in 
column 3, say T, is an approximation to T + 
(1 — T)(\/r0)\ then if the D value in line 2 is 
to be correct to 5% we must have X/r0 < 5 X 
1O-4; since for this line X/r0 = 0.04Oe, we must 
have 6 < 0.0125. For line 5, we need \/r0 < 
0.0055, or e < 0.013, and for line 15, \/r„ < 0.05 
or e < 10 ~4. This table can now be used to deduce 
the relations between the different variables. 
Thus one sees that in the top few lines 

(4r0A
2 î)or i (4/Sr0)D 

which is again only the simple condition (5). 

Furthermore, the dependence upon € in this region 
is slight. Thus, suppose that we have found some 
particular values «i and D\ such that (4ro/7r2ei»)a ** 
0.02831 and (4/HVr0)D1 «* 0.03009; as may be seen 
from the third line of Table I, these values fall on 
the explosion limit. If now we change to a new 
value of e, «2 = 2.888*i, we will have (4r<>/ir2tS)a *= 
0.009801 and (Ve^o)A = 0,01042; it may be seen 
from the second line of the table, however, that 
the explosion limit is at (^tSr0)Dt = 0.01000. 
Evidently, then, if Di =* 0.960A, we are again at 
the explosion limit. That is, a 4% decrease in 
diffusion coefficient compensates a three-fold in
crease in chain-breaking efficiency. 

For the still lower efficiencies at the bottom of 
the table, the critical condition is approximately 
{4ro/ir2ev)a = 3/** or 

ar„/S =- 3/4 (11) 
independent of (4/&Jr<>)D and hence of D. Here 
the surface destruction is so slow that there is no 
appreciable concentration gradient and hence 
no dependence on the diffusion coefficient. In 
fact, we can simply write 

(4/3)TD-O3Q:« = (&/i)4arrt,n 

which reduces to (11). 
Thus, on the basis of the more complete 

development of the diffusion theory which we have 
presented here, the critical condition changes 
gradually from « = T2D/ra

2 to a = (s/i)ev/r0 as 
e decreases. The fourth column of the table 
shows that the former relation applies only when 
the concentration gradient is large. Since when 
<= = 1 the second condition yields a value of a 
some 10* times greater than the first, it is evident 
that a very slight amount of convective mixing 
would produce a considerable increase in the 
value of a at the limit. I t is quite impossible 
to attempt any quantitative treatment of this 
extra mixing. In explosions at high tempera
tures, such as those of hydrogen and oxygen, 
the lower-limit measurements are made by ad
mitting gas "slowly" to the reaction vessel until 
a flash or a pressure drop is observed. The 
gas being admitted enters a larger vessel through 
a narrow tube; it is probable that the entering gas 
is somewhat cooler than the main volume; in 
some work there is also a difference in composi
tion. One must expect currents of appreciable 
velocity with such an arrangement. In the work 
of Dalton and Hinshelwood8 on the oxidation of 

(8) Dalton and Hinshelwood, Proc. Roy. Soc. (London), A125, 294 
(1929). 
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phosphine a mixture of constant temperature and 
composition was compressed by the slow rise of 
mercury in a vertical tube of uniform cross sec
tion. Here the gas currents must have been 
comparatively small, and it is probably significant 
that this is one of the few reactions for which 
there is any real evidence that the critical a is 
inversely proportional to the square of the vessel 
diameter. The bromine-sensitized ozone ex
plosions of Lewis and Feitknecht9 are another 
case for which the square of the diameter may 
be applied with fair success. For both of these 
reactions, however, the limiting pressure is 
sufficiently sensitive to the condition of the 
surface to indicate disagreement with the simple 
Bursian-Sorokin theory. 

We shall consider very briefly the problem of 
the steady state when a is too small to give ex
plosions. We must now take explicit account 
of the rate of starting chains, say W0 per unit of 
volume and time. Then our steady state condi
tion is 

d» _ _ 1_ d_ ("I) + an + «o = 0 (12) 

which has the solution 
n = {AIr) sin (a/D)l/>r - nc/a (13) 

The boundary condition is now used to determine 
A, with the result 

A = 

where «o is the rate of production of new chains 
per unit of time and surface. The explosion 
condition, as given by the vanishing of the 
denominator, is the same as for volume starting, 
and the difference in the numerators is not 
likely to permit an experimental choice between 
the two equations. We do not know of any case 
in which a reaction above the upper limit with 
the characteristics predicted from (14) or (15) 
has been observed; the equations are presented 
here only to show that the reaction of hydrogen 
and oxygen above the upper limit is not of this 
type. 

The Explosion Limits 

When the two limits are far enough apart not 
to perturb each other seriously, the upper limit 
can be represented fairly well by a linear relation 

Z H [ H 1 ] + / O [ 0 , ] + / X [ X ] = const. (16) 

It is quite definitely established by the work of 
Grant and Hinshelwood10 with quartz and 
alumina vessels and by that of Frost and Alyea11 

in Pyrex coated with potassium chloride that (16) 
is a good approximation except for high H2/O2 
ratios;12 one cannot be sure whether or not this 
latter deviation is due merely to closer approach 
of the two limits, but it is probable that a correct 
theory should be reducible to (16), even though 

this reduction involves as-
r<~evsm[{a/Dyh{ra - X)] - AD sin(a/2?)V«r0 + 4(aD) 

The denominator of (14) is negative within the 
explosion region, and zero at the limit. Any 
change in the experimental variables pressure, 
temperature, composition, etc., which takes the 
denominator from negative to zero values will, 
if continued, lead to larger and larger positive 
values, and hence to lower and lower rates. This 
can be shown directly by calculation in particular 
cases, but it is probably sufficiently obvious. 

The problem of chains starting at the wall must 
be treated separately in obtaining the steady-
state rates. We will again have the equation (2) 
and the solution (4); now, however, the boundary 
condition equates the net rate of branching 
throughout the volume to the rate of surface 
destruction of chains minus the rate of pro
duction of new chains by the surface. This 
equation may be solved for A to give 

(cW-o/4 - D) sin (a/D)1Zv0 + (0D)1Ar0COS (0 /D) 1 Ar 0 

(15) 

(14) 
Ar0 cos(a/2?) 1Ar0 *"' s u m m g terms small which 
must be retained to fit the data more exactly. 
Our knowledge of the lower limit is extremely 
unsatisfactory. Hinshelwood and Moelwyn-
Hughes18 gave the condition 

[H8][O2] ( l + 
const. [X] 

) - const. (17) 

A = 

(9) Lewis and Feitknecht, THIS JOI7RNAL, 83, 2910 (1931). 

[Hj] + [O8] 

for the limit in quartz, while Frost and Alyea 
found 

[ O 1 ] ( S H [ H 1 ] + golOi] + gx[X]) = const. (18) 

for potassium chloride-on-Pyrex. The lower 
limit in quartz is extremely erratic, and although 
decrease in vessel size led to a very rapid increase 
in the pressure at the limit it is quite impossible 
to determine what power of the diameter is in
volved. Frost and Alyea did not investigate 
the effect of varying vessel size. 

We shall now investigate the possibility of 
(10) Grant and Hinshelwood, Proc. Roy. Soc. (London), H lA , 29 

(1933). 
(11) Frost and Alyea, THIS JOURNAL, SS, 3227 (1933). 
(12) Cf. Storch and Montgomery, ibid.. 66, 2644 (1934). 
(13) Hinshelwood and Moelwyn-Hughes, Proc. Roy. Soc. (Lon

don), 1S8A, 311 (1932). 
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fitting these results into the Semenoff-Hinshel-
wood isothermal branching chain theory. For 
this purpose we adopt the rather powerful 
method of writing down all possible reactions 
and then determining what choices of rate con
stants are needed to fit the experimental results. 
In determining what are "possible" reactions the 
general nature of the branching chain theory 
must be kept in mind. The critical condition is 
that the concentration of chain carriers shall 
remain constant at any given value if the chain 
starting reactions are suppressed and the reactant 
concentrations held constant. This evidently 
requires that all processes entering into the 
mechanism shall be of the same order with respect 
to the chain carriers. It is easy to write second 
order chain breaking processes: H -f H + M = 
H2 + M, H + OH + M = H2O + M, etc., 
but it does not seem possible to devise any second 
order chain branching processes more plausible 
than HO2* + HO2* = H -f O + OH + O2. 
I t therefore seems to be necessary either to reject 
the isothermal branching chain theory entirely 
or to assume that second order chain processes 
do not occur at an appreciable rate until the 
chain concentrations have become so high, and 
the reaction rate so great, that the temperature 
rises and a thermal explosion ensues. In the 
latter case the critical conditions will be given 
correctly by considering only reactions which 
are first order in the chain carriers, as we shall 
now do. The catalog of "possible" reactions for 
our present purposes then becomes 

H + O2 

H + O2 

HO2* + H2 

HO2* + H2 

HO2* + H2 

HO2* + H2 

HO2* + M 
H2O2* 
H8O2* + M 
OH + H2 

O + H2 

O + O2 + M 
O + H2 + M 
H + O2 + M 

= 
= 
= 
= 
= 
=> 
= 
= 
= 
= 
= 
= 
= 
= 

HO2* 
OH + O 
H2O2 + H 
H2O2* + H 
H + 2 O H 
OH + H2O 
HO2 + M 
2OH 
H2O2 + M 
H2O + H 
OH + H 
O3 + M 
H2O + M 
HO2 + M 

(D 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 

The reaction 
H2O2 = H2O + O 

might have been included but would make no 
essential change in the results. I t would be 
necessary for a definite fraction of all the H2Oj 
to react in this way, independent of the concen

trations of H2, O2 and X; in this case, however, 
the new process would be kinetically equivalent 
to others already written. The only other re
actions intentionally omitted are "secondary 
activations" which we shall discuss subsequently. 

Then, for the upper limit, where chain-breaking 
at the wall is negligible, a simple calculation 
shows that 

. r H , h + 3fe« + fe» + fe4(3fe8 + fe.[M])/(fe8 + Jt1[M]) 
* l l t l 2 j (k, + kt + k, + k,)[Ht] + k,[M] ^ 

, 3feu[H2] + feu,[O2][M] + JUH1][M] 
*! fen[Hj] + fei,[Os][M] + fe„[H,][M] 

fei + fe2 + feu [M] (19) 

where each term such as AH[M] represents 
* « , H [ H , ] -I- V o [ O 2 ] + V x [ X ] . We must 
now find what conditions upon ki...ku will 
reduce (19) to (16). The obvious way to obtain 
this reduction is to make the two fractions on 
the left side of (19) reduce to constants. For 
the first fraction this means A7 = O and any one 
of A4, A8, h = O. For the second fraction it 
means A2 = O or Ai1 = O or Ai2 = Ai3 = O. Putting 
A7 — O rules out all deactivations of HO2* and 
thus introduces a sharp distinction between 
HO2* formed in (1) and HO2 formed in (14). 
Putting any one of ki, A8, A9 = O effectively 
eliminates (4), since if kg = O, (4) becomes 
equivalent to (3), and if A9 = O, to (5). The 
steps (4) and (8) were suggested by Hinshelwood 
and Williamson,14 but this calculation shows 
that they cannot be of importance. For the 
second fraction the required conditions mean 
that either all or none of the oxygen atoms con
tinue the chain, or that no oxygen atoms are 
formed. 

There seems to be only one other way of ob
taining (16). A formally correct result is ob
tained by making the first term a constant, 
and taking ku = ku — O; if the first term be
comes Ai(I — /3), the result is 

j3fe,fei,[M] = feu(2fe, - /3fe,) (20) 

Here 0 must be a small positive fraction if the 
limit is to occur at a positive pressure. If A7 — 
O, /3 is negative; but if A7, H is considerably larger 
than any other A7, that is, if HO2* is selectively 
deactivated by H2, a positive j3 is possible. 

The first of these two mechanisms gives a rate 
of chain branching which may be written A[H] 
[O2], since it is only for hydrogen atoms that 
there is any real competition; HO2* always 

(14) Hinshelwood and Williamson, "The Reaction between Hy
drogen and Oxygen," Oxford University Press, 1934, p. 68. 
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reacts with Hs, and OH and O either always or 
never continue the chain by (10) and (11). The 
chain breaking is given by A H [ H ] [ O 2 ] [ M ] , and 
the mechanism is kinetically equivalent to 

H + O2 —>• branching of chain 
H + O2 + M —>• destruction of chain 

Actually it is much more complex, since k de
pends upon the rates of (1), (2), (3), (5) and (6). 
Likewise the second mechanism may be written 

O + H2 —>• branching of chain 
O + H2 + X — > destruction of chain 

Here the first step depends upon (1), (2), (3), 
(5), (6), (7) and (11). These two formal kinetic 
equivalents both agree with the skeleton mecha
nism of Grant and Hinshelwood and Frost and 
Alyea, but it must not be forgotten that they 
represent schemes of far greater complexity. 

We turn now to a consideration of the lower 
limit. Here all the gas-phase chain-breaking 
steps are to be replaced by destruction of chains 
at the wall. I t is probably a good assumption 
that H and HO2* are the principal chain carriers 
and that only their destruction need be con
sidered. Then the first of our two alternative 
mechanisms is effectively 

H + O2 = H0S* (1) 
H + O2 = 3H (2) 

HO2* + H2 = (1 + /S)H (15) 

The normal chain steps (1) and (3) are un
questionably fast enough to justify the assump
tion that H and HO2* occur in a constant ratio 
throughout the vessel, a chain spending the 
fraction A3[H2]Z(A3[H2J + Ai[O2]) of its life as H 
and Ai [O2]/(A3 [H2] -f Ai[O2D as HO2*. The 
diffusion constants in these two forms are 

Dn = (ge,o[0,] + gH,H[H8] + gH.xtX])-1 (21) 
Duo,* = («0.0 [O8] + Uo1H[H2] + g0,x[X])-i (22) 

and hence the effective diffusion constant 
D.ft. = (M[H8]PH + M O J ] £ W ) / ( M [ H , ] + J1[O8]) 

(23) 
has a rather complex dependence on the concen
trations of H2, O2 and X. The rate of branching 
based on the total number of chains H and HO2* 
is easily found to be 

a = (Bh + 2M(M[H2] + MOJD-1AU[H1][OS] (24) 
Then, if we use (5), we obtain as a lower-limit 
condition 
(0*i +2JJ8)A14[H1][O,] = GrVV)(M[H2PH + MO1]DH02*) 

(25) 
which reduces to Frost and Alyea's experimental 
result if 

M[H1] > M0»] 

and to that of Hinshelwood and Moelwyn-
Hughes if Au[H2] is comparable with Ai[O2] and 
certain plausible relations are satisfied by the 
coefficients in DH and DnQl*. We have seen, 
however, that (5) is a very dubious relation; 
in this case it is almost certainly incorrect, since 
the entire explosion is suppressed in a silver 
vessel,15 and the value of e in vessels which per
mit explosion must thus be quite small. The other 
extreme relation (11) which is to be used when e 
is very small fails here, since it permits no inert 
gas effect. The experiments thus seem to fall in 
an intermediate range where the theory is almost 
unmanageable. I t is clear, however, that as a 
first approximation we must introduce factors 
eH and eHos* into (25). The Frost and Alyea 
condition is then 

«HM[HJ] » (HoA[OlL 

and the Hinshelwood and Moelwyn-Hughes 
condition is that these quantities are comparable. 
Since Frost and Alyea's lower limits were roughly 
five-fold higher than those of Hinshelwood and 
Moelwyn-Hughes, the natural conclusion is that 
potassium chloride-on-Pyrex removes atomic hy
drogen more efficiently than does quartz. This 
is of course an extremely crude treatment of the 
problem, but it does at least suggest a reconcilia
tion of the two lower limits with a single value 
Of ktf/ki. 

The idea of "secondary activations" is due to 
Semenoff,19 who suggested in particular that hy
drogen atoms produced in (3) frequently would 
have a large kinetic energy and might sometimes 
dissociate hydrogen molecules. The fraction of 
atoms which would do this can be written 

[H 2 ] / (O[H 2 ] +6[O2]) 

In order to fit the upper limit, this must reduce 
to a constant, which would occur if a [H2] >• 
S[O2]. This new chain branching is kinetically 
equivalent to (5), since the OH produced there 
all forms H by (10). Other conceivable secondary 
activations would likewise have to be subjected 
to the condition of a concentration-independent 
efficiency, and would then become the kinetic 
equivalents of chain-branching reactions already 
considered. Thus we may conclude that second
ary activation does not play an important 
role in fixing the explosion limits, though there 
is no reason for it to be entirely excluded. 

(15) Hinshelwood, Moelwyn-Hughes and Rolfe, Proc. Roy. Sor. 
(London), A1S9, 621 (1933). 

(16) Semenoff, Z. physik. Chtm., SB, 169 (1929). 
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The Reaction above the Upper Limits 

Above the upper explosion limit there is a 
reaction of high and variable order; the rate is 
proportional to something like the cube of the 
hydrogen pressure and is markedly accelerated 
by inert gases such as H2O, N2, A, and to a lesser 
extent He; the acceleration produced by O2 

is but little greater than that by N2. The re
action is retarded by packing, and disappears 
completely in a silver vessel. This reaction is 
quite evidently a chain process, with the chains 
being destroyed at the wall more frequently than 
in triple collision. I t was originally supposed by 
Thompson and Hinshelwood17 that these chains 
were of a different type than those functioning 
between the explosion limits, and the correctness 
of this conclusion is supported by the discussion 
of a previous section. More recently, however, 
Grant and Hinshelwood wrote for the upper 
limit the equation 

CiSi[X] [Y] = ^H 2 [XJ [Y] [H 2 J + Zo2[X][Y)[O2] + 
Z M [ X ] [ Y ] [ M ] (26) 

where X and Y are subsequently identified as H 
and O2. This equation does represent the upper 
limit correctly, but the interpretation of it given 
by Grant and Hinshelwood and continued by 
Hinshelwood in subsequent publications is totally 
incorrect. This interpretation is that there is 
a probability v that at a collision between X and 
Y the chain shall branch, but that if "any third 
molecule arrives while X and Y are associated 
in the 'collision complex' then the branching is 
prevented." This means that the original chain 
still survives the triple collision, and is thus 
available to account for the reaction above the 
upper explosion limit. This idea is stated later 
even more clearly. "The explosion ceases at 
the upper limit, because, as we have seen, branch
ing of the chains is prevented by ternary collisions. 
But one particle may, and probably does emerge 
from the collision which is capable of continuing 
an unbranched chain." To derive (26), however, 
one must assume that the original chain is de
stroyed by the triple collision; the verbal assump
tion of Hinshelwood and Grant would lead to 
rather curious upper and lower limits. The net 
branching rate may be written as vk exp. (—tc/r) 
[X][Y], where tc is the time within which a 
third molecule can prevent branching and T is 
the mean free time; this branching rate is bal-

(17) Thompson and Hinshelwood, Proc. Roy. Soc. (London), 
AIM, 610 (1929). 

anced by wall destruction of the chain carrier X. 
Using (5), we would obtain 

[Y] exp. (-«0/r) = const. X r (27) 

since D is proportional to r. For very low pres
sures the right side of (27) is larger, which means 
that the chains are kept under control; and 
for very high pressures it is again larger, due to 
the overwhelming decrease in the exponential 
term. In between there may be two roots, 
giving lower and upper limits. The upper limit, 
however, is totally unlike that of (26) and cannot 
possibly account for the experimental results. 
In particular, (27) involves a dependence of the 
upper limit on the size and character of the vessel 
which is certainly incorrect. Above the upper 
limit, the chains of this mechanism would be 
shortened by adding inert gas, and the rate 
therefore reduced. The conclusions seem in
escapable that a triple collision not only prevents 
branching, but breaks the original chain, and that 
the reaction above the upper limit is brought 
about by some quite new type of chain. We have 
no ideas concerning the nature of this chain other 
than the remark that the possibilities for a 
chemical chain seem to have been exhausted in 
accounting for the limits, and that an energy 
chain therefore suggests itself. Both mechanisms 
must, of course, operate under all conditions. 
The chemical chain probably requires a high 
energy to get started and is thus observable only 
when the chain length becomes infinite. The 
more abundantly produced energy chains may 
well be destroyed more efficiently by the wall 
and probably branch but rarely; they will then 
be too short to observe below the lower limit 
and of course could not be detected between the 
limits. Increase of pressure is likely to be helpful 
to these chains, since there is no reason for them 
to be destroyed at triple collisions more than at 
ordinary ones, and diffusion to the wall will be 
retarded. One can thus understand the main 
features of the reaction above the limit. 

The Reaction with Deuterium 

We now turn to the question whether the 
results obtained by substituting deuterium for 
hydrogen can be accounted for by the changed 
rate of collisions alone, or whether changes in 
the yield per collision must be assumed. We 
shall consider only the upper limit, since it is 
only here that a sufficiently developed theory is 
available. 
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We have already pointed out that the first of 
our two mechanisms is kinetically equivalent to 

H + O8 = branching of chain 
H + Os + M = destruction of chain 

Let 71 be the probability per collision of the 
former reaction, and 72, 7s that of the latter when 
M is H2, O2, respectively. Let Z(A, B, C, . . . ) 
be the number of multiple collisions involving 
A, B, C, . . . when each is present at unit concen
tration. The critical condition is then 

TiZ(H, O2)[H][O3] = TiZ(H, O2, H2)[H][O2][H2] + 
TaZ(H1O^O2)[H][O2]

2 

or 

I t is evident by comparison with (16) that 

Ts Z(H, O2, H2) = T1 Z(H, Os, Or) 
fH Ti Z(H1O2) j0 Ti Z(H1O2) 

Now we know that for an ordinary collision the 
masses enter Z only in the factor [(mi + W2)/ 
WiW2]1/' = Mi2-1/*- Generalizing slightly a 
treatment given by Tolman,18 we take the corre
sponding factor for a triple collision to be FiP2i~l/' 
+ iVi3 - 1 / s + FtPvT^', where the values of the 
F{ depend upon the exact, unknown specifica
tions defining the particular kind of triple collision 
needed. The Ft will be the same for deuterium 
as for hydrogen. Putting in numerical values we 
find 

Z(H, O2, H2)/Z(H, O2) = F1+ 0.718Fi + 1.206F, 
Z(D, O2, D,)/Z(D, O2) = F1 + 0.728F2 + 1.188F, 
Z(H, O1, Os)/Z(H, O2) = 2Gi + 0.246G, 
Z(D, O2, 02)/Z(D, O2) - 2Gi + 0.343G, 

It is then obvious that if the yt are the same for 
deuterium as for hydrogen, / H and / D cannot 
differ by more than 2% for any values of the 
Ft! /0 will be greater for deuterium than for 
hydrogen by from O to 40% depending upon 
the relative values of Gi and Gs. For the other 

(18) Tolman, "Statistical Mechanics," Chemical Catalog Com
pany, New York, 1927, p. 248. 

alternative mechanism similar calculations show 
that / D is at least 0.95/H. The experimental 
result is that / Q is the same for both isotopes and 
/ D = 0.7/H- These calculations have assumed 
that the reaction probabilities per collision 
are the same with deuterium as with hydrogen; 
the conclusion seems to be either that deuterium 
is less efficient as a third body than hydrogen, 
or that the branching probability 71 is greater 
for deuterium than for hydrogen. The experi
ments with deuterium therefore make no real 
contribution to our understanding of this re
action. 

Summary 

1. The mathematical theory of chain reactions 
for which the chains are broken at the wall at 
only a fraction of the total number of collisions 
has been developed and shown to differ in im
portant respects from the case where every 
collision leads to destruction. 

2. The possible chemical chain mechanisms for 
the explosion limits of hydrogen-oxygen mixtures 
have been exhaustively investigated; satis
factory mechanisms all involve 

H + O2 = HO2* 
HO2* + H, = H2O2 + H 

as the normal chain process, and either 
H + O2 + X = HO2 + X 

or 
O + H2 + X = H2O + X 

as the principal gas-phase chain-destroying proc
ess. 

3. The slow reaction above the upper limit 
must be explained by a new chain, which is pre
sumably an energy chain. 

4. Analysis of experiments made with deu
terium shows that these experiments do not 
indicate the same branching efficiency for hy
drogen and for deuterium, as has been erroneously 
deduced by other authors. 
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